Why Does New Knowledge Create Messy Ripple Effects in LLMSs?
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Motivation

e Large Language Models(LLMs) can capture and store a large
amount of knowledge during pre-training phase.

e Since world knowledge is always evolving, post-training
Knowledge Editing(KE) is important for language models(LMs)
to ensure that knowledge remain accurate and up-to-date.

e One desired property and open question in KE is to let edited
LMs correctly handle Ripple Effects, where LM is expected to
answer its logically related knowledge accurately.

Contribution

e We provide insights of why most KE methods still create messy
ripple effects:
e Knowledge storage are distributed stored in LLMs.
e Some knowledge can be updated concurrently easily, while
some can’t.

e We conduct extensive analysis and identify a internal indicator,
GradSim, that effectively reveals when and why updated
knowledge ripples in LMs.

e Further investigations into three counter-intuitive failure
cases(Negation, Over-Ripple, Multi-Lingual) of ripple effects
demonstrate that these failures are often associated with very
low GradSim.
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GradSim: A Ripple Effect Indicator

GradSim is the cosine similarity between the gradients of the

related knowledge facts.

Takeaways:

e GradSim models the distance between knowledge in LLMs.

e We use gradient to represent knowledge because: Gradients
indicate which parameters in the LM are responsible for
increasing/decreasing the likelihood of answering certain

knowledge.

e When two pieces of knowledge are closer, they can reach
each other easily after editing. (Updated concurrently)

We observe a strong positive correlation between ripple effect
performance and the cosine similarity of gradients, with a

Pearson correlation metric reaching as high as 0.85.

Evaluation Matrics:

1. Absolute Likelihood Gain: AlogP (y)
ogP,(y)
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2. Relative Likelihood Gain: A
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3. Exact Match Rate: The proportion of correct answers.
v: ripple effect answer; x: edited fact answer;
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Counter-Intuitive Failure Cases

Knowledge with similar parameter-storing locations, even
if logically unrelated or contradictory, will create positive
ripple effects toward each other, and vise versa.

Negation

e LLMs are expected to answer a negated query after an editing is
applied, but most LLMs failed.

e A strong positive (almost linear) correlation between gains of model
likelihoods for the original and negated facts

e GradSim values between the original and negated facts are very high,
suggesting that the original and negated facts are entangled in
similar knowledge storage locations.
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Over-Ripple
e After a knowledge edit, the LM only memorizes the edited target itself
and continues to provide this target as the answer even when asked
about other knowledge that is related
e The edited target a'x (e.g., Syria) has a much higher gradient similarity

compared to the correct answer a'y (e.g.,Arabic)
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Cross-lingual Transfer

e When editing a piece of knowledge in one language, LLMs fail to
provide the correct answer when asked a question in another
language.

e While the performance on the target language remains low, the
GradSim values are also very low, primarily distributed near zero

Edited in Chinese

English
Chinese

Edited in English

English
Chinese

Distribution of GradSim

Ul

o
Ul
o
o

D
o
B
o
o
W
o
o

w

o
w
o
o

N
o
N
o
o

=
o
o

=
o
=
o
o

Number of samples
S
o

Number of samples
Number of samples

O_ I'.' 1 | E— .
0.00 0.25 0.50 0.75 1.00

GradSim

0L . . : .
0.00 025 0.50 0.75 1.00
Exact Match Rate

0L . . . .
0.00 025 0.50 0.75 1.00
Exact Match Rate




