
GradSim:  A Ripple Effect Indicator 
GradSim is the cosine similarity between the gradients of the 
related knowledge facts. 

Takeaways: 
• GradSim models the distance between knowledge in LLMs. 

• We use gradient to represent knowledge because: Gradients 
indicate which parameters in the LM are responsible for 
increasing/decreasing the likelihood of answering certain 
knowledge.  

• When two pieces of knowledge are closer, they can reach 
each other easily after editing. (Updated concurrently) 

We observe a strong positive correlation between ripple effect 
performance and the cosine similarity of gradients, with a 
Pearson correlation metric reaching as high as 0.85. 

Evaluation Matrics: 
1. Absolute Likelihood Gain:   

2. Relative Likelihood Gain:    

3. Exact Match Rate: The proportion of correct answers. 
y: ripple effect answer; x: edited fact answer; 

ΔlogPe(y)
ΔlogPe(y)
ΔlogPe(x)

Motivation 
• Large Language Models(LLMs) can capture and store a large 

amount of knowledge during pre-training phase.  

• Since world knowledge is always evolving, post-training 
Knowledge Editing(KE) is important for language models(LMs) 
to ensure that knowledge remain accurate and up-to-date. 

• One desired property and open question in KE is to let edited 
LMs correctly handle Ripple Effects, where LM is expected to 
answer its logically related knowledge accurately. 

Contribution 
• We provide insights of why most KE methods still create messy 

ripple effects:  
• Knowledge storage are distributed stored in LLMs.  
• Some knowledge can be updated concurrently easily, while 

some can’t. 

• We conduct extensive analysis and identify a internal indicator, 
GradSim, that effectively reveals when and why updated 
knowledge ripples in LMs. 

• Further investigations into three counter-intuitive failure 
cases(Negation, Over-Ripple, Multi-Lingual) of ripple effects 
demonstrate that these failures are often associated with very 
low GradSim. 
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Knowledge Edit (LLM parameter ! replaced by !′):

Expected Ripple-Effect:

Leonardo DiCaprio is a citizen of United States. Syria.

Leonardo DiCaprio speaks English. Arabic.

Counter-Intuitive Failure Cases:

Negation:

Over-Ripple:

Cross-Lingual:

Leonardo DiCaprio is not a citizen of 

Syria.
Leonardo DiCaprio speaks

Syria.

莱昂纳多·迪卡普⾥奥的国籍是:

美国。

✅

❌

❌

❌United States.

Arabic✅

叙利亚。✅

Similarly-stored 
knowledge is updated 
concurrently

($! → $!")

($# → $#")

Parameter update 
vector:	"! − "

Explained 
by

∇$($($!")
∇$($($#")

similar projection on 
gradient direction

(Leonardo DiCaprio is a citizen of)

(United States.) (Syria.)

Counter-Intuitive Failure Cases 
Knowledge with similar parameter-storing locations, even 
if logically unrelated or contradictory, will create positive 
ripple effects toward each other, and vise versa. 

Negation 
• LLMs are expected to answer a negated query after an editing is 

applied, but most LLMs failed. 
• A strong positive (almost linear) correlation between gains of model 

likelihoods for the original and negated facts 
• GradSim values between the original and negated facts are very high, 

suggesting that the original and negated facts are entangled in 
similar knowledge storage locations. 

Over-Ripple 
• After a knowledge edit, the LM only memorizes the edited target itself 

and continues to provide this target as the answer even when asked 
about other knowledge that is related 

• The edited target aʹx (e.g., Syria) has a much higher gradient similarity 
compared to the correct answer aʹy (e.g.,Arabic) 

Over-Ripple Error 

Cross-lingual Transfer 
• When editing a piece of knowledge in one language, LLMs fail to 

provide the correct answer when asked a question in another 
language. 

• While the performance on the target language remains low, the 
GradSim values are also very low, primarily distributed near zero 


